[Structure-stability-function relationships of dendritic spines].

نویسندگان

  • Haruo Kasai
  • Masanori Matsuzaki
  • Jun Noguchi
  • Nobuaki Yasumatsu
  • Naoki Honkura
چکیده

Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure-stability-function relationships suggest that large and small spines are "memory spines" and "learning spines", respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same ...

متن کامل

Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function.

Dendritic spines, the tiny protrusions that stud the surface of many neurons, are the location of over 90% of all excitatory synapses that occur in the CNS. Their small size has, in large part, made them refractory to conventional experimental approaches. Yet their widespread occurrence and likely involvement in learning and memory has motivated extensive efforts to obtain quantitative descript...

متن کامل

Signaling between the actin cytoskeleton and the postsynaptic density of dendritic spines.

The dendritic spine may be considered a fusion of a specialized actin-based structure akin to filopodia and lamellopodia, with an excitatory postsynaptic density containing glutamate receptors and signal-transducing machinery. This specialized neuronal microdomain is the site of the majority of excitatory synaptic contacts in the mammalian brain. Regulation of spine morphology, composition, and...

متن کامل

MARCKS for Maintenance in Dendritic Spines

Synapses in the brain must maintain a balance between learning-related plasticity and the stability necessary for reliable function. In this issue of Neuron, Calabrese and Halpain describe cell-transfection experiments implicating MARCKS, a protein that binds to both the cell surface and actin cytoskeleton, in the maintenance of dendritic spines.

متن کامل

Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo

Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines' response to different olfactory experiences in vivo is not fully known. In initial studies, a single granul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in neurosciences

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 2003